Airy Functions

(Ai,Aip,Bi,Bip) = airy(x)
airy(x) calculates the Airy functions and their derivatives evaluated at x. The Airy functions Ai and Bi are two independent solutions of y"(x)=xy. Aip and Bip are the first derivatives evaluated at x of Ai and Bi respectively.

Elliptic Functions and Integrals

(sn,cn,dn,ph) = ellpj_sn(u,m)
ellpj calculates the Jacobian elliptic functions of parameter m between 0 and 1, and real u. The returned functions are often written sn(u|m), cn(u|m), and dn(u|m). The value of ph is such that if u = ellik(ph,m), then sn(u|m) = sin(ph) and cn(u|m) = cos(ph).
y = ellpe(m1)
ellpe(m1) returns the complete integral of the second kind: integral(sqrt(1-(1-m1)*sin(t)**2),t=0..pi/2)
y = ellie(phi,m)
ellie(phi,m) returns the incomplete elliptic integral of the second kind: integral(sqrt(1-m*sin(t)**2),t=0..phi)
y = ellpk()
ellpk(m1) returns the complete integral of the first kind: integral(1/sqrt(1-(1-m1)*sin(t)**2),t=0..pi/2)
y = ellik(phi,m)
ellik(phi,m) returns the incomplete elliptic integral of the first kind: integral(1/sqrt(1-m*sin(t)**2),t=0..phi)

Bessel Functions

y = jn(n,x)
jn(n,x) returns the Bessel function of integer order n at x.
y = jv(v,x)
jv(v,x) returns the Bessel function of real order v at x.
y = yn(n,x)
yn(n,x) returns the Bessel function of the second kind of integer order n at x.
y = yv(n,x)
yv(v,x) returns the Bessel function of the second kind of real order v at x.
y = kn(n,x)
kn(n,x) returns the modified Bessel function of the third kind for integer order n at x.
y = iv(v,x)
iv(v,x) returns the modified Bessel function of real order v of x. If x is negative, v must be integer valued.
y = j0(x)
j0(x) returns the Bessel function of order 0 at x.
y = j1(x)
j1(x) returns the Bessel function of order 1 at x.
y = y0(x)
y0(x) returns the Bessel function of the second kind of order 0 at x.
y = y1(x)
y1(x) returns the Bessel function of the second kind of order 1 at x.
y = i0(x)
i0(x) returns the modified Bessel function of order 0 at x.
y = i1(x)
i1(x) returns the modified Bessel function of order 1 at x.
y = i0e(x)
i0e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i0e(x) = exp(-|x|) * i0(x).
y = i1e(x)
i1e(x) returns the exponentially scaled modified Bessel function of order 0 at x. i1e(x) = exp(-|x|) * i1(x).
y = k0(x)
i0(x) returns the modified Bessel function of the third kind of order 0 at x.
y = k1(x)
i1(x) returns the modified Bessel function of the third kind of order 1 at x.
y = k0e(x)
k0e(x) returns the exponentially scaled modified Bessel function of the third kind of order 0 at x. k0e(x) = exp(x) * k0(x).
y = k1e(x)
k1e(x) returns the exponentially scaled modified Bessel function of the third kind of order 1 at x. k1e(x) = exp(x) * k1(x)

Statistical Functions

y = bdtr(k,n,p)
bdtr(k,n,p) returns the sum of the terms 0 through k of the Binomial probability density: sum(nCj p**j (1-p)**(n-j),j=0..k)
y = bdtrc(k,n,p)
bdtrc(k,n,p) returns the sum of the terms k+1 through n of the Binomial probability density: sum(nCj p**j (1-p)**(n-j), j=k+1..n)
p = bdtri(k,n,y)
bdtri(k,n,y) finds the probability p such that the sum of the terms 0 through k of the Binomial probability density is equal to the given cumulative probability y.
y = btdtr(a,b,x)
btdtr(a,b,x) returns the area from zero to x under the beta density function: gamma(a+b)/(gamma(a)*gamma(b)))*integral(t**(a-1) (1-t)**(b-1), t=0..x)
y = fdtr(df1,df2,x)
fdtr(df1,df2,x) returns the area from zero to x under the F density function (also known as Snedcor's density or the variance ratio density). This is the density of X = (u1/df1)/(u2/df2), where u1 and u2 are random variables having Chi square distributions with df1 and df2 degrees of freedom, respectively.
y = fdtrc(df1,df2,x)
fdtrc(df1,df2,x) returns the area from x to infinity under the F density function.
x = fdtri(df1,df2,p)
fdtri(df1,df2,p) finds the F density argument x such that the integral from x to infinity of the F density is equal to the given probability p.
y = gdtr(a,b,x)
gdtr(a,b,x) returns the integral from zero to x of the gamma probability density function: a**b / gamma(b) * integral(t**(b-1) exp(-at),t=0..x)
y = gdtrc(a,b,x)
gdtrc(a,b,x) returns the integral from x to infinity of the gamma probability density function.
y = nbdtr(k,n,p)
nbdtr(k,n,p) returns the sum of the terms 0 through k of the negative binomial distribution: sum((n+j-1)Cj p**n (1-p)**j,j=0..k). In a sequence of Bernoulli trials this is the probability that k or fewer failures precede the nth success.
y = nbdtrc(k,n,p)
nbdtrc(k,n,p) returns the sum of the terms k+1 to infinity of the negative binomial distribution.
p = nbdtri(k,n,y)
nbdtri(k,n,y) finds the argument p such that nbdtr(k,n,p) is equal to y.
y = pdtr(k,m)
pdtr(k,m) returns the sum of the first k terms of the Poisson distribution: sum(exp(-m) * m**j / j!, j=0..k) = igamc( k+1, m). Arguments must both be positive and k an integer.
y = pdtrc(k,m)
pdtr(k,m) returns the sum of the terms from k+1 to infinity of the Poisson distribution: sum(exp(-m) * m**j / j!, j=k+1..inf) = igam( k+1, m). Arguments must both be positive and k an integer.
m = pdtri(k,y)
pdtri(k,y) returns the Poisson variable x such that the integral from 0 to x of the Poisson density is equal to the given probability y: calculated by igami( k+1, y). k must be a nonnegative integer and y between 0 and 1.
p = stdtr(k,t)
stdtr(k,t) returns the integral from minus infinity to t of the Student t distribution with integer k > 0 degrees of freedom: gamma((k+1)/2)/(sqrt(k*pi)*gamma(k/2)) * integral((1+x**2/k)**(-k/2-1/2),x=-inf..t)
t = stdtri(k,p)
stdtri(k,p) returns the argument t such that stdtr(k,t) is equal to p.
p = chdtr(v,x)
Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x)
p = chdtrc(v,x)
chdtrc(v,x) returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v degrees of freedom: 1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf)
x = chdtri(v,p)
chdtri(v,p) returns the argument x such that chdtrc(v,x) is equal to p.
y = ndtr(x)
ndtr(x) returns the area under the Gaussian probability density function, integrated from minus infinity to x: 1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x)
y = ndtri(x)
ndtri(x) returns the argument x for which the area udnder the Gaussian probability density function (integrated from minus infinity to x) is equal to y.
y = erf(x)
erf(x) returns the error function defined as 2/sqrt(pi) * integral(exp(-t**2 / 2),t=0..x)
y = erfc(x)
erfc(x) returns 1 - erf(x).
y = smirnov(n,e)
smirnov(n,e) returns the exact Smirnov statistic for a one-sided test equal to the probability that the maximum difference between a theoretical distribution and an empirical one based on n samples is greater that e.
e = smirnovi(n,y)
smirnovi(n,y) returns e such that smirnov(n,e) = y.
p = kolmogorov(y)
kolmogorov(y) returns Kolmogorov's limiting distribution of a two-sided test or probability that sqrt(n) * max deviation > y.
y = kolmogorovi(p)
kolmogorovi(p) returns y such that kolmogorov(y) = p

Gamma and Related Functions

y = gamma(x)
gamma(x) returns the gamma function of the argument. The gamma function is often referred to as the generalized factorial since x*gamma(x) = gamma(x+1) and gamma(n+1) = n! for nonnegative n.
y = lgam(x)
lgam(x) returns the base e logarithm of the absolute value of the gamma function of x: ln(|gamma(x)|)
y = igam(a,x)
igam(a,x) returns the incomplete gamma integral defined as 1 / gamma(a) * integral(exp(-t) * t**(a-1), t=0..x). Both arguments must be positive.
y = igamc(a,x)
igamc(a,x) returns the complemented incomplete gamma integral defined as 1 / gamma(a) * integral(exp(-t) * t**(a-1), t=x..inf) = 1 - igam(a,x). Both arguments must be positive.
x = igami(a,y)
igami(a,y) returns x such that igamc(a,x) = y. k must be a nonnegative integer.
y = beta(a,b)
beta(a,b) returns gamma(a) * gamma(b) / gamma(a+b)
y = lbeta(x)
lbeta(a,b) returns the natural logarithm of the absolute value of beta: ln(|beta(x)|).
y = incbet(a,b,x)
incbet(a,b,x) returns the incomplete beta integral of the arguments, evaluated from zero to x: gamma(a+b) / (gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..x).
x = incbi(a,b,y)
incbi(a,b,y) returns x such that incbet(a,b,x) = y.
y = psi(x)
psi(x) is the logarithmic derivative of the gamma function evaluated at x.
y = rgamma(x)
rgamma(x) returns one divided by the gamma function of x.

HyperGeometric Functions

y = hyp2f1(a,b,c,x)
hyp2f1(a,b,c,x) returns the gauss hypergeometric function ( 2F1(a,b;c;x) ).
y = hyperg(a,b,x)
hyperg(a,b,x) returns the confluent hypergeometeric function ( 1F1(a,b;x) ) evaluated at the values a, b, and x.
(y,err) = hyp2f0(a,b,x,type)
hyp2f0 returns the hypergeometric function 2F0 in y and an error estimate in err. The input type determines a convergence factor and can be either 1 or 2.
(y,err) = onef2(a,b,c,x)
onef2 returns the hypergeometric function 1F2 in y and an error estimate in err.
(y,err) = threef0(a,b,c,x)
threef0 returns the hypergeometric function 3F0 in y and an error estimate in err.

Other Special Functions

y = expn(n,x)
expn(n,x) return the exponential integral for integer n and non-negative x and n: integral(exp(-x*t) / t**n, t=1..inf).
(ssa,cca) = fresnl(x)
fresnl(x) returns the fresnel sin and cos integrals: integral(sin(pi/2 * t**2),t=0..x) and integral(cos(pi/2 * t**2),t=0..x).
y = dawsn(x)
dawsn(x) returns dawson's integral: exp(-x**2) * integral(exp(t**2),t=0..x).
(shi,chi) = shichi(x)
shichi(x) returns the hyperbolic sine and cosine integrals: integral(sinh(t)/t,t=0..x) and eul + ln x + integral((cosh(t)-1)/t,t=0..x) where eul is Euler's Constant.
(si,ci) = sici(x)
sici(x) returns in si the integral of the sinc function from 0 to x: integral(sin(t)/t,t=0..x). It returns in ci the cosine integral: eul + ln x + integral((cos(t) - 1)/t,t=0..x).
y = spence(x)
spence(x) returns the dilogarithm integral: -integral(log t / (t-1),t=1..x)
y = struve(v,x)
struve(v,x) returns the Struve function Hv(x) of order v at x, x must be positive unless v is an integer.
y = zeta(x,q)
zeta(x,q) returns the Riemann zeta function of two arguments: sum((k+q)**(-x),k=0..inf)
y = zetac(x)
zetac(x) returns the Riemann zeta function: sum(k**(-x), k=2..inf)

Convenience Functions

y = cbrt(x)
cbrt(x) returns the real cube root of x.
y = exp10(x)
exp10(x) returns 10 raised to the x power.
y = exp2(x)
exp2(x) returns 2 raised to the x power.
y = radian(d,m,s)
radian(d,m,s) returns the angle given in (d)egrees, (m)inutes, and (s)econds in radians.
y = cosdg(x)
cosdg(x) calculates the cosine of the angle x given in degrees.
y = sindg(x)
sindg(x) calculates the sine of the angle x given in degrees.
y = tandg(x)
tandg(x) calculates the tangent of the angle x given in degrees.
y = cotdg(x)
cotdg(x) calculates the cotangent of the angle x given in degrees.
y = log1p(x)
log1p(x) calculates log(1+x) for use when x is near zero.
y = expm1(x)
expm1(x) calculates exp(x) - 1 for use when x is near zero.
y = cosm1(x)
calculates cos(x) - 1 for use when x is near zero.